
TECHNICAL NOTES AND SHORT NOTICES 

On the Distribution of Mersenne Divisors 
By Daniel Shanks and Sidney Kravitz 

The Mersenne numbers are those of the form Mp = 2- - 1 with p prime. The 
only possible divisors of Mp are those of the form 2kp + 1. Let fk(x) be the number 
of Mr with p < x that have a prime divisor d = 2kp + 1. As is known, it has not 
been proven, even for a single k, that 

(1) fk(X) 00 

as x - oo. It is also known that 

(2) fk(X) =0 (k = 2, 6, 10, ..) 

for all k of the form 4m + 2, but, with these values of k excluded, one expects, 
heuristically, that (1) is true for all other k = 1, 3, 4, 5, 7, 8, -.. . We conjecture, 
in fact, a stronger result that includes both (1) for these allowed k, and (2) for 
those excluded: 

(3) fk(X) = 2(X) cos (k7r/4) I (q- 1 [1- log(2k) + (121 .k q~k q -2/L log X 09g Xj 

In (3) the product is taken over all odd primes q, if any, that divide k, and Z(x) 
is the well-known conjectured estimate for the number of twin-prime pairs < x: 

(4) Z(x) = 2 (i (p _ 1)2) F dy/log2y. 

In a recent note [1], one of us presented a table of fk(105) for k < 200. In Table 
1 we present a table of fk(x) for 

k X 4m + 2 < 60, x = 105(105)106. 

The larger range of x here, and the sufficient range of k, enables us to make a sig- 
nificant test of (3). We find it convenient, however, to replace the Z(x) in (3) 
by the actual number of twins, Z(x), since these are simple integers which are in 
sufficiently good agreement with Z(x). Further, while such a change in (3) makes 
the infinitude of fk(x) depend upon that of Z(x), we do not regard this as a defect. 
On the contrary, it is highly likely that any proof of 

Z(x) - 00 

could be readily adapted to prove 

fk(x) - 00 (k X 4m + 2) 

also, and we prefer to emphasize this relationship. 
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TABLE 1 

k 
1 2 3 4 5 6 7 8 9 10 

1 581 1042 1441 1816 2190 2528 2883 3246 3574 3912 
3 350 624 854 1101 1310 1546 1761 1980 2219 2390 
4 266 433 626 792 962 1145 1306 1456 1623 1764 
5 141 247 348 445 541 633 725 808 875 939 
7 84 137 188 248 293 339 387 436 475 529 
8 122 205 287 375 446 516 588 654 720 777 
9 115 196 271 344 422 485 549 616 686 743 

11 61 92 121 163 184 217 240 276 308 338 
12 162 284 377 479 566 686 787 875 970 1082 
13 47 75 106 133 163 185 211 234 254 280 
15 88 140 209 268 328 377 430 479 536 606 
16 56 91 137 175 221 266 305 347 383 426 
17 23 52 72 92 109 127 141 161 179 196 
19 26 45 57 81 93 120 140 154 172 185 
20 56 104 138 184 225 264 307 351 385 427 
21 47 89 119 147 181 214 246 268 304 341 
23 18 28 39 59 77 92 108 126 137 154 
24 68 132 195 234 278 324 361 406 452 497 
25 34 52 73 102 110 125 136 158 173 190 
27 27 46 69 95 115 138 159 189 207 232 
28 37 59 90 117 139 172 203 225 244 262 
29 11 23 37 49 62 71 81 93 103 113 
31 16 29 42 55 63 66 72 78 84 91 
32 24 44 61 79 95 113 129 147 163 176 
33. 32 48 69 92 110 128 145 163 178 200 
35 13 33 51 62 77 89 107 120 135 144 
36 41 77 107 145 177 206 243 274 303 333 
37 17 31 35 43 50 61 70 76 84 91 
39 29 49 73 91 107 121 133 147 158 167 
40 25 58 81 96 119 141 154 167 182 198 
41 11 13 20 24 29 35 43 52 57 67 
43 10 20 29 31 40 43 47 56 60 65 
44 19 35 46 59 70 84 96 113 122 133 
45 24 43 69 88 108 122 142 159 175 188 
47 11 15 18 26 31 32 37 41 47 55 
48 39 65 85 111 132 152 176 212 223 256 
49 6 15 23 35 37 43 50 57 62 67 
51 16 25 34 45 55 69 83 93 102 115 
52 15 24 32 45 54 59 70 81 92 99 
53 8 14 19 26 33 40 43 51 58 60 
55 14 25 34 38 43 46 54 58 69 77 
56 30 44 58 65 78 91 103 114 126 137 
57 15 27 44 55 67 79 89 98 107 117 
59 7 9 16 20 23 31 39 43 49 57 
60 47 74 98 132 165 186 214 242 262 279 

In Table 2 we list the ratios: 

(5) rk(x) =Z() cos (k7r/4) qi 1) [- - log(2k)1 
fk(X k qjk q-logx J 

The counts Z(x) were taken from [2], and are repeated here in Table 3 for con- 
venience. 

Table 2 suggests that our conjectures (3) are true for all k. The deviations from 
unity seen there are not excessive considering the limited value of x, and the rather 
small totals found in certain cases, e.g., f69(106) = 57. The deviations seen, in fact, 
no doubt are due mostly to fluctuation terms of approximate order O(V\x), since 



ON THE DISTRIBUTION OF MERSENNE DIVISORS 99 

TABLE 2 
rk(x) 

x 10-5--+ 
k 

1 2 3 4 5 6 7 8 9 10 

1 0.990 0.978 0.982 0.991 0.987 0.999 0.997 0.989 0.992 0.992 
3 0.984 0.984 1.003 0.992 1.003 0.995 0.995 0.989 0.976 0.992 
4 0.943 1.035 0.999 1.007 0.998 0.982 0.981 0.984 0.976 0.983 
5 0.926 0.946 0.938 0.936 0.928 0.929 0.924 0.927 0.947 0.967 
7 0.963 1.059 1.079 1.046 1.067 1.080 1.079 1.072 1.089 1.071 
8 0.952 1.018 1.017 0.995 1.009 1.022 1.023 1.029 1.035 1.050 
9 0.886 0.935 0.946 0.953 0.937 0.956 0.963 0.961 0.955 0.966 

11 0.741 0.885 0.943 0.896 0.958 0.952 0.983 0.957 0.949 0.948 
12 0.912 0.938 0.990 0.997 1.019 0.986 0.980 0.987 0.986 0.969 
13 0.783 0.886 0.879 0.897 0.883 0.913 0.913 0.922 0.941 0.935 
15 0.871 0.989 0.930 0.929 0.916 0.936 0.936 0.941 0.932 0.903 
16 0.955 1.062 0.991 0.994 0.950 0.926 0.922 0.908 0.911 0.898 
17 1.158 0.927 0.940 0.943 0.961 0.968 0.995 0.976 0.973 0.974 
19 0.897 0.939 1.041 0.940 0.989 0.899 0.880 0.897 0.889 0.906 
20 0.990 0.966 1.023 0.984 0.972 0.973 0.955 0.936 0.946 0.935 
21 1.005 0.962 1.012 1.050 1.031 1.024 1.017 1.046 1.022 0.999 
23 1.034 1.206 1.218 1.033 0.956 0.940 0.915 0.878 0.895 0.873 
24 0.996 0.931 0.887 0.948 0.965 0.972 0.997 0.993 0.989 0.986 
25 0.634 0.753 0.754 0.693 0.777 0.803 0.843 0.813 0.823 0.822 
27 1.097 1.171 1.099 1.024 1.023 1.002 0.993 0.937 0.948 0.928 
28 0.922 1.052 0.971 0.959 0.976 0.926 0.897 0.907 0.927 0.947 
29 1.288 1.121 0.981 0.951 0.909 0.933 0.934 .0.912 0.913 0.913 
31 0.819 0.823 0.800 0.785 0.829 0.930 0.974 1.008 1.037 1.050 
32 1.018 1.011 1.028 1.020 1.026 1.013 1.015 0.998 0.998 1.014 
33 0.819 0.995 0.976 0.940 0.951 0.961 0.969 0.967 0.981 0.958 
35 1.358 0.975 0.890 0.940 0.916 0.932 0.886 0.886 0.873 0.898 
36 1.042 1.012 1.027 0.974 0.966 0.976 0.945 0.940 0.943 0.941 
37 0.627 0.627 0.783 0.819 0.853 0.822 0.819 0.846 0.848 0.859 
39 0.734 0.793 0.751 0.774 0.797 0.829 0.862 0.875 0.902 0.937 
40 1.011 0.796 0.804 0.872 0.852 0.845 0.885 0.915 0.931 0.939 
41 0.859 1.328 1.218 1.305 1.308 1.274 .1.186 1.100 1.113 1.039 
43 0.894 0.817 0.795 0.957 0.898 0.982 1.028 0.968 1.001 1.014 
44 0.994 0.987 1.060 1.063 1.085 1.063 1.064 1.014 1.042 1.048 
45 0.921 0.940 0.827 0.834 0.823 0.857 0.842 0.843 0.850 0.868 
47 0.733 0.983 1.157 1.031 1.047 1.193 1.180 1.195 1.156 1.084 
48 0.789 0.867 0.936 0.923 0.940 0.960 0.948 0.883 0.931 0.890 
49 1.503 1.101 1.014 0.858 0.983 0.995 0.979 0.963 0.982 0.998 
51 0.957 1.122 1.166 1.134 1.124 1.054 1.002 1.004 1.015 0.988 
52 1.021 1.170 1.240 1.135 1.146 1.234 1.190 1.154 1.127 1.149 
53 0.876 0.917 0.955 0.899 0.858 0.833 0.886 0.838 0.818 0.868 
55 0.697 0.716 0.744 0.857 0.918 1.009 0.984 1.028 0.958 0.943 
56 0.516 0.645 0.692 0.795 0.803 0.810 0.819 0.830 0.833 0.841 
57 0.892 0.909 0.789 0.813 0.809 0.807 0.820 0.836 0.849 0.852 
59 0.883 1.261 1.003 1.034 1.089 0.951 0.865 0.881 0.857 0.809 
60 0.676 0.788 0.842 0.805 0.781 0.815 0.811 0.805 0.825 0.850 

these temporarily dominate (at these values of x) the conjectured actual second 
term involving log (2k)/log x. 

The heuristic argument for (3) is quite convincing, especially in view of pre- 
vious successes for similar arguments. A Hardy-Littlewood conjecture is 

(6) Z(x) '-.-'Z(x), 

and, similarly, cf. [3], the number of integers n ? x such that n and 2kn + 1 are 
both prime should be asymptotic to 

(7) 
(a - 2 )fii( - 12 dy/log y log 2ky. 



100 DANIEL SHANKS AND SIDNEY KRAVITZ 

TABLE 3 
Z(x) 

X- 10-5 Z(x) X 105 Z(X) 

1 1224 6 5331 
2 2160 7 6061 
3 2994 8 6766 
4 3804 9 7472 
5 4565 10 8169 

Now the factor 

(8) cos2 (kir/4) = ,0, , or 1 

for k _ 1, 2, 3, or 4 (mod 4), respectively, and therefore represents the fraction 
of the primes 2kn + 1 which have 2 as a quadratic residue: 

(9) (2kn2+ 1) 1. 

Finally, for such a possible prime divisor 2kn + 1, we assume that 1/k is the prob- 
ability that 2 is a (2k)ic residue of 2kn + 1, for if g is a primitive root of 2kn + 1, 
by (9) we have, 

28 
9 2 (mod 2kn + 1) 

for some s, and, we assume, that the probability of 2k j 2s is 1/k. For these primes, 
n and 2kn + 1, we therefore have 2kn + 1 1 2' - 1. 

Combination of (7), (8), and (4) now yields (3). 
Now we wish to suggest two extensions of this work to others, since we think 

these to be of some importance, but are not satisfied with any efforts that we our- 
selves have made. 

(A) We note, first, that only the case k = 1 in (3) is a special case of the Bate- 
man-Horn conjecture [3]. What generalization is needed to include other values of 
k? Consider first k = 3. As is known, any p = 6n + 1 can be written 

p =-6n + 1 = a2 + 3b2, 

but only those p where 3 1 b have 2 as a cubic residue. By Landau's generalization 
of the prime number theorem to prime ideals, it follows that 3 1 b occurs 3 of the 
time, asymptotically speaking. This verifies one case of our "assumption" above, 
namely, that the probability for k = 3 is 3. 

It is clear, then, that we wish a generalization of the Bateman-Horn conjecture 
[3], and also its extension by Schinzel [4], to include not only primes but also prime 
ideals. But we have not satisfied ourselves that we have obtained this with full 
generality and proper exactitude. 

(B) For no k has (3) been proven. Each such conjecture is essentially equiv- 
alent to the twin-prime conjecture (6), and, no doubt, will be proven when, and 
only when, (6) is proven. As is known, a much weaker conjecture has never been 
proven, namely, that there are infinitely many Mersenne composites. If (3) were 
true for even a single k, then there would certainly be infinitely many composites. 
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It seems to us that this weaker conjecture is provable, but we have not proved 
it. While (6) has not been proven, one can also examine the sequences 

p, p + 2k 

collectively, for all k. This has been done by Lavrik [5], and results have been ob- 
tained there concerning "almost all" k. If the generalization suggested in (A) is 
carried out successfully, it seems to us that Lavrik's techniques applied to our 
(3) should suffice to prove that there are infinitely many Mersenne composites, 
and probably also stronger results concerning a lower bound on their number. 
Further, one would then also have an upper bound on the number of Mersenne 
primes. 
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A Counterexample to Euler's Sum of Powers 
Conjecture 

By L. J. Lander and T. R. Parkin 

A search was conducted on the CDC 6600 computer for nontrivial solutions in 
nonnegative integers of the Diophantine equation 

(1) X15 + X25 + + Xn5 = y5, n 6. 

In general, to decompose t as the sum of n fifth powers assume s is the largest. 
Then for each s in the range 

(t/n)"5 ? S < t115 

a decomposition is sought in which t-S3 is the sum of n - 1 fifth powers each 
< s5. Applying the algorithm repeatedly a final decomposition is reached of the form 

U = V5 + W5 

in which w ? v and each v in the range (u/2)"65 ? v u1/'5 is considered. Since 
x5-X (mod 30) for each integer x, we require w- u - v (mod 30). A precalculated 
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